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Abstract
Studies have shown that engaging patients in their
treatment, by providing them with information about their
medical condition, can lead to better health outcomes.
However, generic medical information targeted at a wide
audience has been found to be limited in its effectiveness.
This has led to efforts to produce personalized patient
information. Personalizing information in the healthcare
domain is complicated because differences among patient
characteristics (age, preexisting conditions, genetic
predispositions, etc.) can be in the tens or hundreds of
thousands. This has nonetheless been best achieved by
Intelligent User Interfaces (IUIs) applying Natural Language
Generation (NLG). Most NLG healthcare systems apply
templates—where information is entered into
predetermined slots—as a means of generating customized
patient information. Templates are inapplicable to Bantu
languages, due to their characteristic agglutinative
structure. We present here our ongoing efforts to develop
an NLG system for Runyankore, a Bantu language
indigenous to Uganda, with the aim of using it to produce
personalized patient information in rural Uganda.
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Introduction
There is a new trend towards patient-centric healthcare,
which aims to involve patients directly in the medical
decision-making process, through providing them with the
relevant information they need to better understand their
medical condition [6, 11, 28]. This leads to patients making
more informed decisions about their prescribed treatment
[10, 13], which in turn leads to better patient outcomes and
reduced healthcare costs [6, 10, 13, 16, 28]. The provided
patient information can be used to complement and
reinforce what is discussed during the patient-doctor
consultation [6, 8, 11], especially given that the fraction of
the information which is actually retained by the patient is
consistently rather small [8, 11, 9].

The problem with most patient-information material is its
limited effectiveness when generalized to apply to a wide
audience [8, 11, 12]. What is usually produced is either a
generic document with minimal information common to
everyone [6, 11, 28], or a large document which tries to
provide the maximum information considered relevant to
one (and hence mostly irrelevant to many) [8, 11, 9, 12].
Such material is likely to be discounted or ignored by
patients [8, 9, 12]. On the other hand, studies in health
communication have shown that patient information is likely
to be more effective if it is personalized for a specific patient
[6] and presented in an understandable form and manner
[13], that is, natural language.

Intelligent User Interfaces (IUIs) focused on automated
output generation of relevant patient content have been
achieved through Natural language Generation. NLG, being
the production of understandable texts in a selected human

language from an underlying non-linguistic representation
of information [2, 25], has been successfully applied to
produce personalized patient information
[6, 12, 7, 18, 22, 23] using templates. Templates are
selected predefined structures, with blank spaces that
usually have associated requirements specifying what kind
of information can fill them [17, 25]. Our research aims to
extend the advantages of personalized patient information
to rural Uganda by automatically generating text in
Runyankore.

Runyankore is a Bantu language indigenous to south
western Uganda [1, 26, 27]. It has the characteristic
complex agglutinative structure (glueing together of different
grammatical units to form a single word), noun class
system, and verbal morphology [1, 26, 27]. This makes the
use of templates in the generation of text in Runyankore
inapplicable. We discuss here our use of another NLG
technique, grammar engine, to capture the complex
linguistic structure of Runyankore, and generate text using
ontologies as input into our NLG system. An ontology is a
logical theory specifying the entities of interest in a given
domain, and the relations and constraints which hold
among these entities [14, 15]. The process of generating
natural language descriptions from these logical theories is
called verbalization.

Automated Content Generation in Runyankore
Our research is aimed at automating the generation of
patient information in Runyankore, particularly drug
prescription explanations. Our interest in IUIs as
human-computer interfaces lies in their ability to improve
the efficiency, effectiveness, and naturalness of HCI [24].
Our IUI implementation uses semantic web technologies,
and verbalizes knowledge represented in the Web Ontology
Language (OWL) in particular.



Content generation has been achieved by using the NLG
grammar engine technique. A grammar engine considers
grammatical categories (such as sentence, noun phrase,
and verb phrase) and rules which implement the categories
as objects with complex sets of properties associated with
them [20]. In our case, the grammatical categories are:
subject prefix, adjective prefix, genitive, grammatical form,
tense, and aspect. The first four are determined by the noun
class of the subject or object, while the last two are
necessary for verb conjugation. The rules generally include:
patterns of interpreting logical theories [3] based on work
done for isiZulu [21], obtaining plurals of nouns [5], verb
conjugation [4], and phonological conditioning.

The input into the NLG system is a logical theory, and the
output a textual interpretation of that logical theory in
Runyankore. The example shows the verbalization of
subsumption (v), a relation which states that the entity to
the left of v is a subclass of the entity to the right (the
verbalization of the constructor itself is bolded):

Logical theory: Hydrocodone v MorphineDerivative

English: Every hydrocodone is a morphine derivative

Runyankore: Buri mubazi gwa hydrocodone n’omubazi
gw’okukyendeeza obusaasi

Our NLG system has been tested on a sample of a large
healthcare ontology—SNOMed-CT [19]—in order to assess
the generation of Runyankore text containing medical
jargon. Our IUI is able to select content based on the logical
theories of interest in the ontology. The generated text is
then written to a text file.

Evaluation of Generated Text
The typical method of evaluating the performance of NLG
systems is to ask subjects to read and judge the generated
text, as compared to human-authored text [2] We are taking
a qualitative community-based approach to IUI evaluation
[24], by testing naturalness in two ways: (1) assessing the
grammatical correctness and/or understandability, and (2)
distinguishing between human-authored and computer
generated text. As our NLG system is based on a grammar
engine, it is crucial to test its output for its adherence to
Runyankore grammar rules. We plan to present study
participants with different sentences, which they will then
categorize based on their assessment of the correctness of
the grammar, and how well they understand each.
Distinguishing between human-authored and generated text
will be done by presenting study participants with a list of
sentences, composed of both human-authored and
generated text. They will then label each sentence, based
on whether they assess it to have been written by a human
or generated by a computer.

Our target population is all people who can read, write, and
speak Runyankore. This is subdivided into two: linguists
and non-linguists. Runyankore Linguists are important in
this study because they have a deep understanding of the
grammar of the language, and can thus provide insightful
feedback about what aspects of the generated text are
incorrect and/or not understandable. Non-linguists, on the
other hand, are the audience to which the applications of
our NLG system will be put. It is therefore important to
ensure that they understand the generated text, and
consider it to be correct. We are considering obtaining our
study participants from Mbarara, a district in Uganda where
Runyankore is predominantly and ethnically spoken.



Conclusion and Future Work
The benefits of providing personalized patient information
have led to efforts to automate the generation of text in the
healthcare domain. This has been achieved through IUIs
based on NLG systems. Our ongoing efforts to implement
similar systems for Runyankore have resulted in an NLG
system based on a grammar engine. We are currently
evaluating the generated text, which may lead to a revision
of the NLG system, to account for the recommendations
given. In this case, the updated NLG system will be
re-evaluated with new study participants. Once the NLG
system is completed, the targeted initial application is to
generate personalized drug prescription explanations.
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